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We solve the differential equation for the temperature distribution function in a focusing tube 

of a circulation gas lens. We have derived an expression for the temperature distribution 

with consideration of gravity forces in the form of an expansion in Whittaker functions in a 

tube with infinite and finite thermal conductivity for the wall materials. 

In studying thermal gas lenses we note that the law governing temperature distribution serves as the 

primary basis for the analysis of properties in this type of lens. Knowledge of this law makes it possible 

rather easily to make the transition from the temperature distribution to the distribution of the refractive 

index of the gas medium in the lens and, consequently, to investigate the electrodynamic characteristics of 

the lens. Reference [1] gives the law for the temperature distribution in a thermal gas lens without consid- 

eration of the mass forces. It was pointed out in [2-4], however, that the presence of gravity forces exert 

significant influence on the operation of the lens in light guides , Consideration of the effects exerted by mass 

forces on the temperature distribution in a thermal gas lens will make it possible more completely to study 

its p roper t ies  and to answer the question as to the possible ways of using lenses of this type. Let us ex- 
amine the circulat ion gas lens (Fig. 1) proposed by Berreman,  whose principle of operation is descr ibed 
in [4]. All of the physical  p roces se s  in such a lens stand out quite c lear ly  and can be descr ibed by ra ther  
simple mathemat ical  means.  At the same time, the derived resul ts  are  easily extended to other types of 
thermal  gas lenses.  The p rocess  within the Iens is regarded  as steady. 

A differential equation was derived in [4] for the t empera tu re  distribution' function, with considerat ion 
given to gravitat ion within the focusing tube of the circulat ion gas lens, Here it was assumed that the gas 
flow remains  laminar  in the focusing portion of the lens (in the segment EF-CD).  However, unlike the axi-  
symmet r i c  ease, the gas moves as a resul t  of the head which is a function of the coordinates  r and q~ (Fig. 
2). It is assumed that the gas density is constant in each of the branches  A'B '  and AB and that it equals Pi 
and P2, respect ively,  while the p r e s s u r e  in each of these branches  is determined by the expression 

P' 2 P~ + gpi 2h~ ( 1 -  r ) = c o s ~  , ( 1 )  

�9 ' [~0 

where P0 is the p r e s s u r e  of the outside air .  

Let us introduce the auxil iary quantity Tg 

TgG % z)= TM--T (r, 9, z). (2) 

We will assume that the change in t empera tu re  in the axial d i r e c t i o n -  in eompar ison with its change 
in the t r ansve r se  d i r e c t i o n -  is so small  that we can assume 

02T 
- -  - -  0 .  ( 3 )  

OP 

Having introduced the dimensionless  coordinates ~, go, ~ and taking into considerat ion (2) and (3), we 
present  the differential equation derived in [4] for the t empera tu re  distribution in the fo rm 

02Tg 10T_g "q- 1 02rg. OT_g , 
0~ ~ q---n G -  n ~ 0(P ~ =K(1--boncOsq~)(l--Y12) ~ (4) 
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F i g .  1. D i a g r a m  of a c i r c u l a t i o n  g a s  l e n s .  

w h e r e  K is  a d i m e n s i o n l e s s  c o n s t a n t  by  m e a n s  of which  we t ake  into  c o n s i d e r a t i o n  the  p h y s i c a l  and  g e o m e t -  
r i c a l  p a r a m e t e r s  of the  l ens ,  wi th  e x p r e s s i o n  (1) w r i t t e n  in the  f o r m  

P = Po + gpho (1 - -  bo~l cos qg). (1') 

Wi th  c o n s i d e r a t i o n  of (1') we d e t e r m i n e  the  t e m p e r a t u r e  d i s t r i b u t i o n  in the  b r a n c h  A ' B '  (for ~ = 0) f r o m  the  

C l a p e y r o n  equa t ion  by  the  e x p r e s s i o n  

Tg[~= o = (AT - -  fiT) + 6Tbo~l cos % (5) 

w h e r e  AT = T M - T 0, 6T = g h 0 / R  i s  e x p r e s s e d  in un i t s  of t e m p e r a t u r e .  

We wi l l  s u b s e q u e n t l y  e x a m i n e  a s e m i i n f i n i t e  c i r c u l a r  c y l i n d r i c a l  tube  (Fig .  2a).  I t  i s  obvious  tha t  the  
g a s  t e m p e r a t u r e  in such  a tube  m a y  not  be  l o w e r  than  T 0, and  when h e a t e d  i t  m a y  a t t a i n  i t s  m a x i m u m  p o s -  
s i b l e  m a g n i t u d e  of T M. In t h i s  c a s e  (5) w i l l  b e  a b o u n d a r y  cond i t ion  when ~ = 0, wh i l e  fo r  the  b o u n d a r y  con -  

d i t ion  at  inf in i ty ,  wi th  c o n s i d e r a t i o n  of (2), we have  

Tg]<_,. -+ O. (6) 

In the  p l a c e  of a r e a l  bounded  s t r u c t u r e  we can  i n t r o d u c e  a s e m i i n f i n i t e  s t r u c t u r e  in to  our  c o n s i d e r a -  
t i on  if  we a s s u m e  tha t  the  l eng th  l of the  s e g m e n t s  in the  focus ing  tube  has  been  c h o s e n  s u f f i c i e n t l y  l a r g e  to 
a s s u m e  the  g a s  t e m p e r a t u r e  in the  c r o s s  s e c t i o n  CD to b e  c o n s t a n t  and equal  to  the  t e m p e r a t u r e  T M of the  
m e t a l  c o a t i n g .  The  gas  t e m p e r a t u r e  in  each  l a t e r a l  c r o s s  s e c t i o n  of such  a tube  m u s t  s a t i s f y  the  cond i t ion  

of p e r i o d i c i t y  in r e l a t i o n  to  the  c o o r d i n a t e  go, i . e . ,  

Tg(~l, % ~ ) =  Tg(~, r + 2~, ~) (7) 

and, s i n c e  the  f o r c e  of g r a v i t y  i s  c o n s t a n t  in the  v e r t i c a l  d i r e c t i o n ,  i t  m u s t  s a t i s f y  the  cond i t i on  of s y m m e t r y  

wi th  r e s p e c t  to  the  v e r t i c a l  d i a m e t e r :  

rg(~l, % ~ ) =  Tg(q, 2~- -q) ,  ~). (8) 

S ince  the  t e m p e r a t u r e  T M of the  tube  w a l l  i s  cons t an t ,  i t  fo l lows  f r o m  (2) tha t  

rgln=i = O. (9) 

On the  tube  a x i s  (when 77 = 0) the  g a s  t e m p e r a t u r e  m u s t  b e  f in i t e  

Tgl~= o ,< oo (10) 

and  i t  m u s t  be  i ndependen t  of the  a n g u l a r  c o o r d i n a t e  go. The  so lu t i on  of (4) i s  sought  in  the  f o r m  

[ K-~ ~) t01, q~). (11) = cxp 

P r e s e n t i n g  the func t ion  tO?, go) in the  f o r m  of the  s e r i e s  

r 
t (~1, r = Z b'~R,~ (~1) cos nq0, (12) 

n=0 

s u b s t i t u t i n g  (11) and (12) in to  (4), equa t ing  the  t e r m s  tha t  a r e  i d e n t i c a l  func t ions  of the  a n g u l a r  c o o r d i n a t e s ,  
c o n s i d e r i n g  tha t  b 0 << 1, and  n e g l e c t i n g  the  t e r m s  con ta in ing  b 0 in p o w e r s  of two and h i g h e r ,  we t u r n  to  the  
e x a m i n a t i o n  of the  p r o c e s s  wi th  r e s p e c t  e x c l u s i v e l y  to  the  s i ng l e  r a d i a l  c o o r d i n a t e ,  which  e n a b l e s  us  to s i m -  
p l i fy  the  c o m p a r i s o n  of the  r e s u l t s  f r o m  th i s  p a p e r  wi th  t h o s e  d e r i v e d  e a r l i e r .  
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Fig. 2. Focusing tube of a circulation gas lens with infinite (a) 
and finite (b) thermal conductivity. 

As was to be expected, in the case  under  considera t ion  the zeroth  approximat ion  desc r ibed  by the 
equation 

d2Ro .jr_ dRo (13) d~ ~ ~ + ~ (I - -  ~ )  Ro = O 

coincides  exact ly with the equation for  the t e m p e r a t u r e  distr ibution,  without cons idera t ion  of gravi ta t ion  
(see, for  example,  [1]). The effect  of gravi ta t ion  is taken into cons idera t ion  by means  of the functions 
Rn(n > 0), which a re  solutions of the nonuniform different ia l  equation 

n dn , - ~ +  1 3 n ( 1 - n ~ )  - R ~ = y n ~ ( 1 - - n ' ) R ~ - ,  

and which are functions of the zero function. According to (9) and (I0), we can write the boundary condi- 
tions for (13) and (14): 

R,~[~=~ = o (n = 0, I ,  2 . . . .  ), (15) 

mo]'~=o < ~ ,  (16) 

R.[n=o=O ( n = 1 ,  2 . . . .  ). (17) 

It is easy to demonstrate that the solution of the boundary-value problem (13), (15), and (16) is written 
in the form of a series in Whittaker functions [5] 

co 

L (is) 
' 11 I Jm,O. /4 ,0  

m - - 0  m = 0  

where  the eigenvalues of ~m,0, de te rmined  f r o m  (15), a r e  the roots  of the equation 

M~/~ ,o  (~ ~)  = o, (19) 

while the eigenfunctions fro,0, which c o r r e s p o n d  to the va r ious  eigenvalues,  will be  orthogona] in the in terva l  
[0, 1], and namely:  

] O,k- - /= l ,  

~ (I - 0 h,oh,odn - af~.o oL~ .o  k = i = . , .  (2o) ( 

We can use  the method of vary ing  constants  to solve the boundary-va lue  p r o b l e m  (14), (15), and (17). In 
this  case  [5], 

. ,=o m=o 2{o (I~.,,~) 

where  

r I l 

..... . . . .  (21) 
0 q 

�9 2 I _  ~ /1 /13~, , ,~  ), 
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{ , dR: R: dR), 

is a function that  is independent of the rad ia l  coordinate ,  while the values  of flm,n a r e  roots  of the equation 
1 

,t'R'n ([5, ~1) ~1 ~ (1 - -  q2) R,~_flq = 0. (22) 
0 

Thus,  if we know the ze ro  solution of the p rob lem,  we can find the comple te  solution of the p rob lem.  To 
der ive  the t empe ra t u r e -d i s t r i bu t i on  law appl icable  to a gaseous  medium in i ts  f inal form,  it is a good idea 
to or thogonal ize the function Rm, n, which is p e r m i s s i b l e  s ince s e r i e s  (21) is a sequence of l inear ly  inde- 
pendent functions and the t e m p e r a t u r e  dis tr ibut ion should be p re sen ted  in the f o r m  of expansion in or thog-  
onal functions fro,n, de te rmined  c o r r e c t  to the sign by the fo rmula  [6] 

m - - I  l 

k=0 o (23) ~ 
m , r ~  ~ 1 m - - 1  1 

0 k = 0  0 

Assuming  the or thogonal izat ion p r o c e s s  to have been completed,  util izing the conditions of orthogonali ty for  
the t r igonomet r i c  functions and the functions fm,n  (n = 0, 1, 2 . . . .  ), as well  as boundary condition (5), we 
f inal ly obtain 

1 

I ~ (1 - -  02) f~,0d~ 

1 

~ ~lf~,~d~l 
+ 6 T b o Z  exp ( ~K' ~) -~ 

m=0 .f fZ'n'fl~l 
0 

fm,i (~,*.,, ~1) cos % (24) 

In ce r t a in  cases ,  f r o m  pure ly  technological  cons idera t ions ,  it is m o r e  convenient to f ab r i ca te  the c i rcula t ion 
gas  lens f r o m  a g lass  tube whose outside su r face  - with the exception of the insulated "windows" - is me ta l  
coated.  In this case ,  between the heated meta l  tube which exhibits a constant  t e m p e r a t u r e  T m and the gas  
flow we have a g lass  s pace r  which is made of a m a t e r i a l  that exhibits a compara t ive ly  low coefficient  of 
t h e r m a l  conductivi ty.  A unique t e m p e r a t u r e  dis tr ibut ion is es tabl i shed within the glass ,  and this must  be 
taken into cons idera t ion  in analyzing the t e m p e r a t u r e  r e g i m e  within the gas .  Even in this case  we will a s -  
sume the opera t ional  r e g i m e  for  the lens to be such that i ts  focusing point can be rep laced  by a semiinf ini te  
tube (Fig. 2b). The di f ference  f r o m  the p r o b l e m  cons ide red  above l ies in the var ia t ion  in the boundary con- 
ditions at the wall  of the tube.  In analogy with (2), if the t e m p e r a t u r e  in the g lass  is introduced by means  
of the re la t ionship  

Tgl01, % ~)=Tgl__T01, % ~), (2') 

in the s t e a d y - s t a t e  r e g i m e  condition (9) mus t  be  rep laced  by the condition at the g l a s s - m e t a l  boundary,  i.e,, 

and the conditions at the g a s - g l a s s  boundary 

+ = 0 (2S) 

Tg,I.=,---- Tgk=,. 
OT c = ~ OTg_ . 

~gf= ~ n=l g 0~1 n=l 

(26) 

(27) 
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Rela t ionsh ips  (5)- (8) and (10) r e m a i n  va l id  even in this case ,  while  fo r  the g la s s  it b e c o m e s  n e c e s s a r y  to in-  
t r oduce  yet  ano ther  condi t ion which fo r  the  gas  is ident ica l  to (6), i . e . ,  

Tgll<. ~ -+ 0. (6') 

Condit ion (6') c o r r e s p o n d s  to the p r a c t i c a l l y  u t i l i zed  c a s e  of level ing out the t e m p e r a t u r e  in the  cen t r a l  
b r a n c h  AB of the lens  [7]. The  length of the focus ing  tube at which this is poss ib le  is, of cou r se ,  i n c r e a s e d  
in c o m p a r i s o n  with me ta l  tubes ,  of which m o r e  will  be sa id  in deta i l  l a t e r  on. 

We know [8] that  in the s t e a d y - s t a t e  r e g i m e  the t e m p e r a t u r e  d i s t r ibu t ion  in the g l a s s  is d e s c r i b e d  by 
the Lap lace  equation, i . e . ,  

O~Tgl _}_ 02Tgi ~_ 1 Org 1 @ 1 02rgl = 0, (28) 
0-5"~-' n O~ ~1 ~ 0 r  

whose solution, with consideration of (7), (8), and (6'), will be 

7g 1= s exp (--  %) [C',,J,~ (?~1) +CnN,~ (?rl)] cos nqo. (29) 
n=O 

The t e m p e r a t u r e  d i s t r ibu t ion  within the gas ,  as  above,  is d e s c r i b e d  by Eq. (4). Consequent ly ,  in this  c a s e  
the f o r m  of the  z e r o  solut ion 08)  is re ta ined ,  as  well  as  that  of the addi t ional  solut ion (21) f o r  the rad ia l  
funct ion.  However ,  unlike the above, the e igenva lues  of the b o u n d a r y - v a l u e  p r o b l e m  under  cons ide ra t i on  a r e  found 
as r o o t s  of the de t e rminan t :  

- -Ro(? ,  1) 

t=o  
_ _  ~, dRo i 

g---~-q n=, I 

(3o) 

f o r  the  z e r o  solut ion and 

, ? , u - 

- ~ ( ~ ,  i) 

dR: 
-- ~g -~-~ n=i 

= 0 (31) 

fo r  the addi t ional  solution,  w h e r e  

q~ -- 

,b) 

In this  c a s e  the funct ions  R0(Tm, 0, ~) no longer  c o r r e s p o n d s  to the o r thogona l i ty  condi t ion (20). 

T h e r e f o r e ,  in o r d e r  to de r ive  a final e x p r e s s i o n  fo r  the t e m p e r a t u r e - d i s t r i b u t i o n  function,  on the 
bas i s  of the r ad ia l  funct ions  R n (n = 0, 1 . . . .  ) we have  to c o n s t r u c t  a s y s t e m  of o r thogona l  funct ions  Cm,n 
(Tin,n, ~?), us ing (23), and we have  to wr i t e  the sought  solut ion with cons ide ra t i on  of (5) in the f o r m  of s e r i e s  
in funct ions  of Cm,n. Having c a r r i e d  out this  p r o c e s s ,  fo r  the t e m p e r a t u r e  d i s t r ibu t ion  in the gas  we find 

t ! ~1 (1 - -  ~12) ~ m , o & l  

Tg = (AT - -  ST) exp K 
~=o i' r 

1 

,l"ql~m, idol 

~ ( t -+-6Tb~ Z exp 7m,i ~ o - -  -- J ~m,l(Y,~,i, ~1) cos % (32) K / 
m=O .i' 

0 

Thus,  unlike the a x i s y m m e t r i c  c a s e  in which g r a v i t y  f o r c e s  a r e  not taken into c o n s i d e r a t i o n  [7], in 
this  c a s e  we note  d i s rup t ion  of s y m m e t r y  fo r  the t e m p e r a t u r e  d i s t r ibu t ion  r e l a t i ve  to the axis  of the  focus ing  
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tube of the lens. In analogy with [7], if we assume the minimum absolute t empera tu re  to be the axial (in 
the optical sense) value for  the t empera tu re  at each c ross  section of the tube, as we can see f rom (24) the 
effect of gravitat ion leads to a shifting of the optical lens axis relat ive to its geometr ic  axis, and this dis-  
placement  va r i es  as a function of the axial coordinate.  Moreover,  the fact that the tempera ture-d is t r ibut ion  
function contains a t e r m  with a cosinusoidal  function of the amplitude coordinate ~P, which represen t s  anin-  
finite se r ies  in odd powers of the radial  coordinate,  indicates the different t empera ture  distributions in the 
upper and lower halves of the focusing tube, and in the final analysis  this must resul t  in the appearance of 
odd aberra t ions  in the image of the light spot. 

The effect of the glass  is manifested p r imar i ly  in the magnitude of the eigenvalues of 7re,n, which will 
be smal le r  than the corresponding values of fim,n and they will be functions of the thermal  conductivity of 
the spacer  mater ia l  and of the type of gas.  This cha rac te r i zes  a s lower rate  of increase  for  the t empera -  
ture  in the gas.  Knowing the quantity 7 m n and tim n makes it possible  to co r r ec t  the length of the focusing 
segments  of a lens with and without glass,  these lengths being those at which it is possible to make the t ran-  
sition to an examination of a semiinfinite s t ruc ture .  It is obvious that in this case the focusing effect of the 
lenses will be identical for both designs, since that effect is cha rac te r i zed  by the t empera tu re  differences 
ac ros s  the length of the focusing tube. 

However, general ly  speaking, there  is an exponential var ia t ion in the tempera ture  at the g a s - g l a s s  
boundary. Appropriate  choice for  the thickness of the glass  spacer  can make this law differ little f rom the 
l inear .  In this case the resul ts  f rom [9] are  applicable to such a s t ruc ture  with a high degree of accuracy,  
i . e . ,  with a glass  tube placed between the heated metal and the laminar  gas flow it becomes possible to al ter  
the cha rac te r i s t i c s  of the optical bundle. 

The numer ica l  p rocess ing  of these resul ts  is possible with the aid of an electronic digital computer .  

As was pointed out in [4], the effect of gravitat ion can be reduced by lowering the ra t io  of the light- 
beam radius to the radius of the focusing tube. F r o m  these solutions we see that the gravi ta t ion  effect can 
also be controlled by means of the p a r a m e t e r  b 0, i . e . ,  by perfect ing the design of the lens. 

If it becomes  n e c e s s a r y  to take into considerat ion the gravi ty fo rces  and to pe r fo rm the rmal -eng inee r -  
ing calculations, these resul ts  can be extended to other sys tems  by selecting an analog for  the p a r a m e t e r  b 0. 

NOTATION 

~=r/~ 
= z/a 

Tm 
To 
g 

b 0 = a / h o ,  
K = 2wcpP/~aXg 
W 

ep  
P 

R 
J and N 
Xg and ~.g 1 

is the dimensionless  radial  coordinate; 
is the dimensionless  axial coordinate;  
is the t empera tu re  of the wall of the focusing tube; 
is the t empera tu re  of the ambient medium; 
is the accelera t ion of f ree  fall; 
where h 0 is the height of the lens; 
is a dimensionless  constant; 
is the volumetr ic  gas flow ra te  through the focusing tube; 
is the heat capaci ty of the gas constant p ressure ;  
is the gas density; 
is the universal  gas constant; 
a re  Besse l  and Neumann functions; 
are  the thermal  conductivities of the gas and the glass,  respect ively .  
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